Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The seminal work of DiPerna and Lions (Invent Math 98(3):511–547, 1989) guarantees the existence and uniqueness of regular Lagrangian flows for Sobolev vector fields. The latter is a suitable selection of trajectories of the related ODE satisfying additional compressibility/semigroup properties. A long-standing open question is whether the uniqueness of the regular Lagrangian flow is a corollary of the uniqueness of the trajectory of the ODE for a.e. initial datum. Using Ambrosio’s superposition principle, we relate the latter to the uniqueness of positive solutions of the continuity equation and we then provide a negative answer using tools introduced by Modena and Székelyhidi in the recent groundbreaking work (Modena and Székelyhidi in Ann PDE 4(2):38, 2018). On the opposite side, we introduce a new class of asymmetric Lusin–Lipschitz inequalities and use them to prove the uniqueness of positive solutions of the continuity equation in an integrability range which goes beyond the DiPerna–Lions theory.more » « less
-
We consider various versions of the obstacle and thin-obstacle problems, we interpret them as variational inequalities, with non-smooth constraint, and prove that they satisfy a new constrained Łojasiewicz inequality. The difficulty lies in the fact that, since the constraint is non-analytic, the pioneering method of L. Simon ([]) does not apply and we have to exploit a better understanding on the constraint itself. We then apply this inequality to two associated problems. First we combine it with an abstract result on parabolic variational inequalities, to prove the convergence at infinity of the strong global solutions to the parabolic obstacle and thin-obstacle problems to a unique stationary solution with a rate. Secondly, we give an abstract proof, based on a parabolic approach, of the epiperimetric inequality, which we then apply to the singular points of the obstacle and thin-obstacle problems.more » « less
An official website of the United States government
